Multi-nutrient rice set to address worldwide ‘hidden hunger’ challenge

A multi-nutrient type of rice bred to produce beta-carotene and increased levels of iron and zinc could help tackle maln...

Swiss researchers reveal details of a new method that combines several micronutrients into one rice plant, overcoming a longstanding challenge that previous breeding efforts have failed to overcome.

“Our results demonstrate that it is possible to combine several essential micronutrients - iron, zinc and beta-carotene - in a single rice plant for healthy nutrition,”said Dr Navreet Bhullar, senior scientist at the Laboratory of Plant Biotechnology at the Swiss Federal Institute of Technology (ETH) in Zurich.

Deficiencies of minerals and essential vitamins, including iron deficiency anaemia (IDA), zinc deficiency and vitamin deficiency are not restricted to developing countries.

The phenomenon of “hidden hunger” has found its way towards high-income countries in Western Europe.

Iodine intake in the UK for example has fallen in recent years, and mild iodine deficiency has reappeared.  

In addition, vitamin intake in Italian women and vitamin C in Scandinavian men and male smokers is low as are intakes of vitamin D and E for people living in Northern, Western and Southern Europe.

Gene cassettes

Writing in the journal Scientific Reports, Dr Bhullar describes the work needed toengineer a gene cassette containing four genes for the micronutrient improvement.

This cassette is then inserted into the rice genome as a single genetic locus. In doing so iron, zinc and beta-carotene levels in rice varieties can be increased at the same time.

The method is arguably more efficient than crossing rice lines and their individual micronutrients to achieve the required micronutrient content in rice grains.

“Combining different nutritional traits as a single genetic locus in a major staple crop is a significant step towards realizing combined supplementation for health benefits, although further improvements and optimization of the combined traits are still possible,” the authors wrote.

“If one would substitute 70% of the currently consumed white rice with the multi-nutrient variety, this could markedly improve vitamin A supplementation already in addition to sufficient iron and zinc in the diet,” added Dr Bhullar. 

Add a Comment